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Summary. The general theory of analytic derivatives for the equation-of-motion 
coupled cluster (EOM-CC) method is reviewed. Special attention is paid to the 
EOM-CC singles and doubles (EOM-CCSD) approximation, which has the same 
computational scaling properties as the coupled-cluster singles doubles (CCSD) 
ground state method and is therefore applicable to a wide range of molecular 
systems. The detailed spin orbital equations that must be solved in EOM-CCSD 
gradient calculations are presented for the first time, and some guidelines are 
discussed regarding their computational implementation. Finally, use of the EOM- 
CCSD gradient method is illustrated by determining the structure, dipole moment 
components, harmonic frequencies and infrared intensities of formyl fluoride 
(HFCO) in its singlet excited (n, ~*) state. 
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1 Introduction 

The reliable characterization of potential energy surfaces for excited electronic 
states is one of the most important and challenging frontiers for modern quantum 
chemistry. Due to the participation of these systems in essentially all laser spectro- 
scopic experiments and prospects of controlling chemical reactions by selective 
involvement of intermediate electronic levels, there is an increasing need for 
detailed understanding of molecular excited states and their properties. For vari- 
ous reasons, information provided by theory in this area has not kept pace with 
that for processes that occur strictly on the lowest adiabatic surface of a given 
symmetry and spin multiplicity, where standard easy-to-use methods for highly 
accurate calculations are widely available. 

Traditionally, the most successful quantum chemical treatments of excited states 
have been based on multiconfigurational zeroth-order wave functions [-1], often 
augmented by additional configuration interaction (CI) [2-6] or perturbation 
theory [7, 8-] to account for dynamical electron correlation effects. In principle, 
correlated multireference calculations are able to describe electronic wave func- 
tions accurately for both ground and excited states over a wide range of molecular 
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geometries. However, the ease of applying these methods to chemical problems is 
mitigated by several factors. For one, the cost required to maintain a consistent 
level of accuracy scales approximately factorially with the number of valence 
electrons in the system; accurate calculations for molecules with more than a few 
nonhydrogen atoms can therefore be very expensive. Another consideration is that 
construction of a suitable zeroth-order wave function may be difficult, since slight 
adjustments in the active space can profoundly affect the results. Although some 
successful strategies have been developed for dealing with difficult situations [9], 
accurate calculations of excited state properties are not easy to perform with 
correlated multireference methods and are mostly left to specialists. 

One technique free of some of the problems discussed above is the equation-of- 
motion coupled-cluster (EOM-CC) method, originally outlined by Monkhorst 
[10] and subsequently developed by several others [-11-22]. Difficulties associated 
with the selection of an appropriate zeroth-order wave function are circumvented 
in these calculations by basing the parameterization on a ground state [23] that 
does not mix with the level(s) of interest [24]. In the most practical realization of 
EOM-CC, the coupled-cluster singles and doubles (CCSD) method [25] is used to 
obtain a correlated wave function for the ground state. The wave function para- 
meters are then used as the basis for a similarity transformation of the electronic 
Hamiltonian. The resulting transformed Hamiltonian (H) is finally diagonalized in 
the subspace of quasiparticle states comprised of the Slater determinant reference 
for the ground state and those related to it by promotion of one or two electrons. 
Energy levels and the electronic structure of excited states determined by the 
diagonal representation of n are demonstrably superior to those obtained from the 
bare electronic Hamiltonian (standard single reference CI) in the same determi- 
nantal basis [16, 18-21]. Moreover, unphysical scaling of the energy with respect 
to the number of electrons in the system- a characteristic failure of all truncated CI 
approaches - is avoided in EOM-CC due to the block upper triangular structure of 
the transformed Hamiltonian [26]. The EOM-CCSD model is more easily applied 
to chemical problems than multireference techniques since the task of constructing 
a zeroth-order wave function in the latter is replaced by a simpler and often less 
costly evaluation of the ground state CCSD wave function. Nevertheless, the 
desirable balanced nature of multireference methods is retained to some extent in 
EOM-CC, especially in eases where the singly and doubly excited quasiparticle 
configurations that constitute the basis o f / t  represent adequate approximations to 
the final states of interest. 

The accuracy of EOM-CCSD is competitive with large-scale correlated multi- 
reference calculations when two criteria are met. First, non-dynamical electron 
correlation effects in the ground state must be small enough that the CCSD wave 
function does not differ significantly from the exact result. In addition, the excited 
states of interest should be adequately characterized as single excitations relative to 
the ground state. A practical limitation imposed by these requirements is that the 
EOM-CCSD model is not generally capable of consistent accuracy over a complete 
potential energy surface, especially asymptotic regions associated with homolytic 
bond breaking. The reason for this is that the single determinant starting point for 
the ground state CCSD calculation is not even qualitatively correct in these 
situations and the accuracy of the ground state wave function may be severely 
compromised [27]. However, when applied to the study of excited state structures 
in the Franck-Condon region or to the characterization of isomers on the excited 
state potential energy surface, the EOM-CCSD method can be expected to 
give accurate results when the criteria above are met, as illustrated by existing 
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applications [28-31]. Finally, when the ground state is adequately represented by 
the single determinant CCSD method, it should be noted that the "singly excited" 
states described most accurately by EOM-CCSD are precisely those that most 
chemists are interested in - low-lying levels accessible from the ground state by one 
photon processes. 

It is widely appreciated that an efficient scheme for evaluating analytic energy 
derivatives is a prerequisite for any method that is intended for the routine study of 
molecular potential energy surfaces [32]. While the potential function and position 
of local minima and transition states can be determined by performing energy 
calculations over a grid of points, such a procedure is inefficient and finally 
becomes intractable for molecules that contain more than a few atoms. However, 
exploration of the surface is greatly facilitated if the energy gradient can be 
calculated for a cost that does not scale appreciably with the number of geometrical 
degrees of freedom. An interest in potential energy surfaces for molecules in excited 
electronic states was the impetus for recent work which culminated in the formula- 
tion of an analytic gradient strategy for EOM-CC calculations and its implementa- 
tion at the EOM-CCSD level of theory [33, 34]. Hence, this powerful method can 
now be applied to investigations of excited states in much the same way that 
standard correlated methods (essentially all of which have accompanying analytic 
gradient extensions) are used to treat ground state chemistry. 

The formalism for EOM-CC gradients presented in Ref. [33] applies to 
methods defined by any truncation of the ground state CC wave function and 
diagonalization space. However, the equations presented in that work are based 
on general operators and do not provide a basis for implementation of energy 
derivatives for specific truncated approximations. For methods such as EOM- 
CCSD, working equations are obtained by expanding the abstract operator ex- 
pressions in terms of fundamental quantities expressed in the representation of 
molecular spin orbitals. The principal objectives of this paper are to document the 
explicit equations that must be solved to calculate EOM-CCSD energy derivatives 
analytically and to discuss some practical guidelines that simplify their implemen- 
tation. In addition, use of the method is illustrated by determining the structure 
and properties of formyl fluoride (HFCO) in its singlet (n, ~*) excited state. 

2 Theory 

It is appropriate to begin our discussion of EOM-CCSD gradient theory by 
summarizing some of the notation that will be used in this section. Following 
a common convention, spin orbitals occupied in the zeroth-order Slater determi- 
nant that approximates the ground state wave function (10)) are designated by the 
labels i,j,  k, . . . ,  while a, b, c ... specify unoccupied levels. In some equations, it 
will be convenient to refer to orbitals that may be either occupied or unoccupied in 
the reference determinant; the  generic indices p, q, r ... are reserved for this 
purpose. The complete space of Slater determinants comprising [0) and those 
obtained from it by all possible promotion of electron(s) from occupied to unoc- 
cupied orbitals is specified by h. Specific subspaces of h that will be invoked in the 
following are defined by 

g: All determinants obtained from 10) by promotion of one or two electrons. 
q: All determinants obtained from 10) by promotion of more than two elec- 

trons. 
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p: The diagonalization space [,[ 0) @ g].  

Ground state coupled-cluster theory [25, 35-37] and its extension to calculate 
derivatives of the energy analytically [..38-49] are discussed at length in the 
literature and the reader is assumed to be familiar with these subjects. Similarly, 
details pertaining to the EOM-CCSD parameterization of excited state wave 
functions and the construction of the similarity transformed Hamiltonian will not 
be presented since these topics are also treated adequately elsewhere [19]. Rather, 
we specialize to analytic derivatives of the EOM-CCSD energy and focus on 
aspects of these calculations that require theoretical insight or analysis of operator 
expressions that are not encountered in ground state CC theory. Therefore, 
mastery of the subject matter of this paper coupled with a knowledge of standard 

• CCSD gradient approaches should allow experienced computational quantum 
chemists to implement our EOM-CCSD gradient formalism rather easily. 

In EOM-CCSD theory, electronic states are obtained by diagonalizing the 
(non-Hermitian) similarity transformed Hamiltonian/-I defined by 

H =- exp( -- T)Hexp(T). (1) 

In Eq. (1), H is the bare electronic Hamiltonian and T is the cluster operator that 
defines the ground state wave function via the usual CC ansatz 

which implies 

I ~/ref) = exp(T)[  0),  (2) 

E~¢f = <01/~10>. (3) 

Electronic energies can be written as biorthogonal expectation values 

E = < ~ I H I  g'> (4) 

= (0[ ~ e x p (  -- T)Hexp(T)N[ O) (5) 

= (OI ~ / T N  [ 0), (6) 

., where ~o and ~ are left- and right-hand eigenvectors of/~ 

1 2 Z.' i'afb; = lo + ~,i li"i*a + 4 ,bij 

~ = ~ o + ~ x + ~ 2  

= r o  + Z r~ati +-~ Z TT~atibtj. 
ai abij 

(7) 

(8) 

(9) 

(10) 

(11) 

that parameterize (together with exp( - T) and exp(T), respectively ['19]) the final 
bra and ket state wave functions. For the purpose of clarifying subsequent dis- 
cussion, we point out that the correlated CCSD ground state is contained in the 
spectrum of/~, namely the root for which N = ro = 1 [,all r~ = r~ = 0] and where 
Ao is the A vector introduced by Arponen [50] and later exploited by Adamowicz 
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et al. [38] to simplify the calculation of CC energy derivatives. Hence, any set of 
equations for EOM-CCSD gradients must reduce to those of CCSD theory when 
the N and L a amplitudes assume these values. Note that biorthogonality of the 
excited and ground states in EOM-CC [12] mandates that lo = 0 for the former, 
while ro need not vanish. 

Straightforward differentiation of the energy functional (Eq. (6)) with respect to 
the perturbation Z yields 

~-~- -- <Ol Roe IO> + <°lL:X/a~l°>oz 

+ <01 £:H@zT ~10> - <0l ~e ~-~ ~10> 

OH 
+ (01Z~ ° exp( - T)-~Z exp(T) ~10).  (12) 

While this expression could serve as the basis for a computational implementation 
of EOM-CCSD energy derivatives, the formalism would be of no practical use 
since all but the last term necessitate iterative steps that scale with the sixth power 
of the basis set dimension (the same scaling properties as the CCSD method) and 
furthermore require separate solutions for each degree of freedom. It is easy to 
show that the sum of the first two terms vanishes due to biorthonormality of the 
final states, but those that include 8T/3x remain since the energy is not stationary 
with respect to first-order changes in the cluster amplitudes. However, it has been 
shown [33] that the Dalgarno-Stewart double interchange technique [51] can be 
used to eliminate these terms in favor of an additional perturbation independent 
linear operator ~e. Matrix elements (amplitudes) of this deexcitation operator 

~, ~-- ~,1 -t- ~,2 (13) 

1 : ~ (ifita + - ~, (~itajtb (14) 
ai 4 abij 

are determined by solving the system of linear equations 

(01~rlp)  = - (015Ip)  E ( p l H -  Ereflp)] -1, (15) 

where matrix elements of 5 

Z = 51 + 52 (16) 

1 
= ~ ~i  t a + -~ ~, ¢~JJajtb (17) 

ai abij 

are numerically equal to the first derivative of the energy with respect to the 
T cluster amplitudes. It is rather easily demonstrated that this operator is com- 
pletely determined by contractions amongst ~ ,  ~ and/~ involving intermediate 
states that lie outside the space spanned by p [33], 

(015 Ip> = (01 ~/-71 q) (q  I N' IP). (18) 

Note that Eq. (18) implies that the ~ amplitudes vanish both for the ground state 
(where N -- ro = 1 and therefore cannot connect determinants belonging to the 
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Fig. 1. Diagrammatic representation of the ~ amplitude equations, which are also documented 
algebraically in Eqs. (19) and (20). The upper and lower thick lines correspond to the ~ and 
~. operators, respectively, while the T cluster operator is represented by thin line. Matrix elements of the 
similarity transformed Hamiltonian R are designated by wavy interaction lines. Note that all diagrams 
involve triply and quadruply excited intermediate states 

p and  q subspaces) and  in cases where the E O M - C C S D  method  is exact, namely  for 
systems conta ining fewer than  three electrons or with at mos t  two unoccupied spin 
orbitals (where q is the null set). Terms  contr ibut ing to S are mos t  easily enu- 
mera ted  with d i ag rammat i c  techniques since their use greatly simplifies analysis of  
the in termedia te  states. A comple te  set of d iagrams for the E1 and ~2 deexcitat ion 
ampl i tudes  is given in Fig. 1. So tha t  the t rea tment  is applicable to both  closed shell 
restricted and  open shell reference determinants ,  ant isymmetr ized (or Brandow) 
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diagrams are used. Rules for translating the diagrams into corresponding spin 
orbital equat ions are given, for example, in Ref. [52]. The equivalent algebraic 
expressions are 

¢ i  a = ¼ l i . e f  rJIi i I ra .e l  r57 - -  ½ li~,ef r,w I ra .e l  l[Xf 
ta tmn~r  mne f  - -  2 ta tmn rr ine f  ~e~rnn rr ranaf "[- te IranrV inaf  

"[- ¼ ~eflmn~ef a ia - -  ½ l i n ~ e f  Ti , 1 Iran~ef  K~ lin ~ e f  l~ 
~ef 'ran ~ ma ~ 2 t a f  ~mn~ ie "~ ta f lrana me 

½ 1 m n ~ e f  r~l] " lmn~eg r,l, r Imo~.ef Ill" ~im e f  *rr 
~e f~mo rr oina -1- ½ ~ea "ran ,r  ni fo  -1- - -  - -  lg e rmn VV gna f ~ef Iron r v f iga  

l lmn~ fg  Ill7 lio ~ e f  l/ll I i n r e f  r/w 1 lio ~ e f  r57 ½ +½ (19) - -  - -  2 t a f l m n  rr mneo ~ef~mn • r ranoa ~ag'mn r • g m f  e 

and 

~iaj b : lemrraWijabe - -  P - ( a b ) l a m r e W i j e b  - P-(tJ)lermW~j,b'" i e ..~ p_(ij)P_(ab)l~r~mWraj,b 

l l m n , e f r j l  / .. ira e f  1 l r a n , e f w  ..[_¼1ij ~ef l~l  7 
q- 4 "e f  " m n "  ijab + P - ( t J ) P - ( a b ) l a e r m n W j n b f  + ' C  ab "mn i j e f  " e f ' m n r "  mnab 

1 ran e f  1 " in e f  
_ _  __ -~ P_(tJ)lefrmn Wmjab P _  (ab) le, rmn Wij fb  

1 ij e f  .. raj e f  -~ P - ( a b ) I  fbrra. Wm.e.  -- ½ P -  -- (q)l .b rra. Wi . e f  
lij ~e I7 .. mj e + &liJ.eyuz4 ' .b 'mn"  m.ef T± P- ( i j )P- (ab) l~Jr ,~Fi~  + '~b'm'. ,e -- P-(q)l .brraFie 

ij e .. in e -- P-( tJ)P-(ab)l~ermWraj ,b  + P _  ( a b )  lebrraFma - P_(i j )P_ ( a b )  t ~ T r ~ W f j e b  

+ P_( ,b)  g Jr Wfra . - P_ (ij) Wjra.. + P-(i j )  r e 
mn e l i j ~ e r , w  mn e 

- -  P_(ab) le ,  r m W i j , b -  *ey'ra" y~b~ -- l~b rra Wijen, (20) 

where the Einstein summat ion  convent ion has been followed. In Eqs. (19) and 
(20), one- and two-body  matr ix elements o f / t  [53] are designated by F and W ,  
respectively. These quantities are defined in terms of T amplitudes, Fock  matrix 
elements and ant isymmetr ized two-electron integrals and are documented  in 
Table 1 of Ref. [19]. The  antisymmetric permutat ion opera tor  P _  (rs) is defined by 

Table 1. Time required (in seconds) for discrete stages of EOM-CCSD energy 
and energy + analytic gradient calculations for the ~, state of vinylidene, using 
a triple-zeta plus double polarization basis set consisting of 78 contracted 
Gaussian functions. The calculation was performed in C2, symmetry on an 
IBM RS-6000/370 

Energy Gradient 
calculation calculation 

Integral evaluation 35 35 
SCF calculation 5 5 
Integral transformation 31 31 
Integral processing 9 9 
Ground state CC equations 126 126 
Evaluation of/1 elements 16 16 
bI diagonalization (~) 62 62 
Solution for L~e - -  54 

equations - -  61 
Density matrix evaluation - -  9 
Transformation of F - -  8 
Integral derivatives - -  102 

Total 281 518 
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its action on a function of the arguments 

P-(rs) 5e ( pqrstu) - 5e ( pqrstu) - 5e ( pqsrtu). (21) 

To facilitate comparison of the algebraic expressions with the diagrammatic 
representation of the S amplitudes, terms in Eqs. (19) and (20) have been ordered so 
that a one-to-one correspondence exists between them and the diagrams in Fig. 1. 

Once the ( amplitudes are available, derivatives of the energy can be calculated 
from the equation [33] 

OZ (O[Seexp( T) exp(T)N[O) + (OI exp( - T) ~ exp(T)10). (22) 

Note that the second term does not contribute for the root corresponding to the 
CCSD ground state since both ~ and ~ vanish in this case. Meanwhile, the first 
term reduces to the gradient expression derived by Adamowicz et al. [38] for the 
CCSD method [with ~ = A and ~ = ro = 1] as anticipated above. In passing, we 
point out that f f  plays a somewhat different role than the A operator of CC 
gradient theory despite some superficial similarities. In the latter case, the 2 ampli- 
tudes participate in the parameterization of a dual state that allows the energy and 
arbitrary first-order properties to be written as biorthogonal expectation values. 
This means that the gradient and properties such as the dipole moment can be 
calculated by contracting appropriate operators with the reduced density matrix 
defined by expectation values of creation and annihilation operators over the CC 
ket state (Eq. (2)) and its dual wave function, (01A exp( - T) [54]. In EOM-CC 
theory, however, the ~" operator does not lead to satisfaction of an analogous 
generalized Hellman-Feynman condition. Stated alternatively, the final state ener- 
gies are not simultaneously stationary with respect to variation of the 2.q ~, N and 
T amplitudes. This is a consequence of the fact that the T amplitudes are 
determined for the ground state. In any event, the operator expression for the 
EOM-CC gradient (Eq. (22)) involves the first-order response of just the bare 
molecular orbital basis Hamiltonian. One can consequently evaluate the gradient 
by contracting an "effective" density D with matrix elements of the differentiated 
Fock operator and antisymmetrized two-electron integrals, 

pq 0 dE = Z Dg c3fqp + Z D,s ~ (rs II Pq). 
OZ pq OZ pq,s 

(23) 

It is important to understand that an identical expression holds for analytic 
derivatives of the CCSD energy, in which D is simply the n-particle reduced density. 
In EOM-CC, however, D is not a true density (in the sense that it can be written as 
a biorthogonal expectation value [55]). Despite this distinction, the correspond- 
ence between gradient expressions for EOM-CCSD and CCSD suggests that 
similar computational strategies can be used for both methods. Indeed, once D has 
been evaluated, an existing CCSD gradient program can perform all subsequent 
steps needed to calculate EOM-CCSD energy derivatives! The remainder of this 
section therefore concentrates on evaluation of the one- and two-particle effective 
density matrix. 

The sum of two distinct quantities constitutes the effective density of EOM-CC 
gradient theory - the actual reduced density consistent with the wave function 
parameterization (p) and a correction term (~) that accounts for the first-order 
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response of the ground state T amplitudes. From Eq. (22), one can infer that the 
one- and two-particle matrix elements of p and ~ are defined by 

pff = (01 ~qo exp( - T)pt q exp(T)~ [ 0), (24) 

p~q = (0t5~ exp( - T ) p  t q t s r  exp(T)~ 10), (25) 

and 

/~ff = (Olaf exp( - T ) p t q  exp(T)l 0), 

f i~q = (01 ~e exp( -- T ) p t q t s r  exp(T)l 0), 

(26) 

(27) 

respectively. Equations (26) and (27) are identical in form to those for the CCSD 
ground state density matrix 

[D~]~of-- (01A e x p ( -  T ) p t q e x p ( T ) l O ) ,  (28) 

[DrPsq]ref ~ ( 0 I A  exp( -- T ) p t q t s r e x p ( T ) [ O ) ,  (29) 

except that A rather than A e is operative in the later. Hence, spin orbital equations 
for the CCSD density [56] apply to the ~ elements as well, provided the 2 ampli- 
tudes are replaced by the ~ obtained by solving Eq. (15). 

Most of the work of implementing EOM-CC energy gradients involves the 
reduced two-particle density matrix, pf~. Due to the presence of the non-linear 
exponential cluster operator as well as A ° and ~ in Eq. (25), a large number of terms 
contribute to each matrix element of p. Again, a diagrammatic approach seems to 
be best in identifying them, and antisymmetrized diagrams for both pqV and p~ are 
supplied in Figs. 2 and 3, respectively. For convenience, p~' and p~q  are partitioned 
into all non-redundant subsets defined by the particle-hole character of p, q, r and 
s. Algebraic expressions for the reduced one- and two-particle density matrix, again 
following the Einstein summation convention and ordered to correspond precisely 
to the diagrammatic representations are 

pi .  i e t i r e  l l i m ~ e  f __  l r o l i m t e f  ] i m r f  t e  
j = - -  l e r j  - -  r o , e ~ j  - 2 ~ e f ' j m  ~ey~jm - -  oe f -m~j  + 6 i j ,  (30) 

= lb rm + rolb  t m + ~leb rmn + ~ r o l e b  tmn  + leb r m t , ,  p~ ~ ,  m ,  ~.m, eo 1 . . . . . . . . . .  (31) 

• im e p'. = rol~ + l~e r,,, (32) 

m a e m e a 1 ~  lrnn~ea ~ f  1_.~ i m n ¢ e f ~ a  
p~ = t.~ - -  le rmt i  - -  le ri  tm - -  2 " o ' e f  ~mn~i - -  2 " O ' e f V m i ~ n  

l _ l m n ~ f  ÷ea l l m n ~ a ~ - e f  ~ I m n ~ e a  ~ f  ~ l m n ~ e f  ~,a ] m n r e  t f  t a 
- -  2 ~ e f  t i  ~mn - -  2 ~ e f  ~n ~mi - -  2 ~ e f  tmnVi - -  2 ~ e f  " m i  Vn - -  ~ e f  " m ¢ i  ¢n 

l m n r e  t a f  m e a m ae  m ae  
q- }ef "m~in - -  ro l e  t~ tm + rol~  tim + le rim, (33) 

pikj  l l i j . e f  1 i j  e f ¼ P - ( i j ) P - ( k l ) b i k b j t ,  (34) = 8"ef'kt + 4 P - ( k l ) l e y r k t t  + 

2p~J = i l i j  ~e (35) 
- -  2 ~ea I k  

2 p ~  1 .  e~ 1 . i e ~ = - -  - -  ( J k ) l e r k t j  -Jr- 2 - ~ , J ~ ' l ' f e ' j m t ' k  _~terjk _ _ i p _ ( j k ) l e r j t  k ½ p _  . i ~ e ± p  t W ~ t i m ~ y ~ t e  

1 , i r a  f e - a  1 • im e f a  l l i m ~ a t f e  1 . im e f a 
+ 4 rye rjk  r,.  + 2 P -  ( Jk )  ly  e r k t~m + 4 "ye're ~jk - -  - fP  - ( Jk )  ly  e rm t j  t k 
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77 / X  

'x/ A A 

p? 
Fig. 2. Antisymmetrized diagrams for the EOM-CCSD reduced one-particle density matrix, p~. The 
diagrammatic representation of 2 ' ,  N and T operators is described in the caption to Fig. 1. Diagrams 
that contain ~ but neither ~ or ~2 correspond to the r0 contributions discussed in the text. The usual 
translation rules apply to these diagrams as well, but the values obtained by contracting the exp(T) with 
the ~ operator must be scaled by a factor of ro. The tg term in p" is actually the sum of three 
contributions; this representation assumes that the bra and ket states have also been chosen to be 
biorthonormal [<~l~ .> = 1] 

_ ¼ p _  • im ~ Ie  1 p  c ; w t i z r f e t ~  + ¼ P _  • ia ~ e f ( J k ) l ~ r k t j m  - -  4 - w~ J~ y~  jm k ( J k ) l ~ e r m t k t j  

1 • i m  e a f l l i m . e  ~ f a  
+ ] P _  ( J k ) l y e r k t m t  j (36) - -  2 ~ f e t m ~ j k  

4 - i"  - -  ¼ P _ ( i j ) f _ ( a b ) l ~ r ]  _ 1  .. im ea 1 .. imra te  Pbj = - ~ P -  ( t j ) P -  (ab)leb rim - -  ~ P -  ( q ) P -  (ab)leb m j 

- -  ¼ P -  ( i j ) P _  (ab) l~r~.  t a - -  P _  ( i j ) P _  (ab)l~mr,~t], (37) 

2poOh = 1.m b. 1 m a b 1 m b a -~P- (ab ) l ec  r intm + ~ P _ ( a b ) l c  r i t  m 1 mn ea b ~ t  c rim -[- -~P_(ab) l~  rmt  i 

1 i ron  ba - e  1 m n  b ea  17ran  e - b a  1 m n  e b a 
- - ~ t ~  rm. t i  - - - ~ P _ ( a b ) l ~  rmtln - -  -~tec ri rm. + ~ P - ( a b ) l e ~  rmt  i t~ 

1 nan b e a  1 ran ea  b 1 m n  e b a 
+ z P - ( a b ) l e ~  ri t ~ .  + z P - ( a b ) l ~ c  r ~ . t  i - z P - ( a b ) l ~  r i trot. 

1 m n  b e a 1 . . . . .  ba (38) - -  7 P _ ( a b ) l ~  rmt  i tn H-7tec rmtln , 
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Fig. 3. Antisymmetrized diagrams for the EOM-CCSD reduced two-particle density matrix pgq. The 
diagrammatic representation of ~e, ~ and T operators is described in the caption to Fig. 1. Excluded 
from this set of diagrams are the ro contributions discussed in the text 
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2pb. ~ = 1.mi a (39) 
~ l b c  rm~  

P c ?  l l m n  ab + ¼ p _  m n a  b = ~ ,cd  r . , ,  ( a b )  lcd rm t . ,  (40) 

p ~  = ±,ab.~,j + ~ P _ ( i j ) P _ ( a b ) t ~ t ~  + ¼P_(i j )P_(ab)lem gimt b 

1 . .  m e a b 1 . .  m e ab mn ea f b -- ~ P _ (q )P_  (ab)l~ ri tmtj - ~ P -  (tj)l~ r i t,.j - ~ P _  ( i j )P_ (ab)l~y rm.t i tj 

1 mn ea f b  1 . .  mn f e  a b . .  mn f e  ab -- ~ P _  (ab )l~f rmntij - -  ~ P -  (tj ) P _  (ab)I ef rim t n t j  - -  ~ P _  (tj)l ef  rim t n j  

¼ P _ ( i j ) P _  m a e b 1 .m  a eb - -  (ab)l~ rmti tj - ~ P _  (ab)z~ rmtij 

1 i m n ~ e f ~ a b  ± l_Llmn~,ab t e f  1 mn e f  a b 
-]- T ' 6 r e f  " i j  Vmn T 16 t e f  " m n r i j  -~- -izP-(ab)lef r i j  t rn tn  

+ 1-~P- " . . . .  b e f 1 . . . .  b e (ab)le rii t~ (tJ)lef rmnti t j  - -  ~ P -  (tJ)le rmjt i -- ¼ P -  m eb a 

+ ¼P_(ij)P_ m b a e  1 . .  m b e a (ab) le r fli , .  - ~ P _ ( t j ) P -  (ab)le r j t i  tr. 

1 . .  mn ae b f  1 . .  mn ae f b + ~ P  _ ( t j )P  _ (ab)ley rimtj. - ~ P -  ( t J )P-  (ab)l~f rimtj t .  

1 . .  mn f ea b " mn a e f  b 
--  g P - ( t J ) P - ( a b ) l e f  r i tm, tj ~ P  - _ (q)P_(ab) l~f  r. tml tj 

+ { p _  .. , , n  e a b f 1 . .  mn a e b f ( t J )P-  (ab)lef  r i t , . t .  tj + ~ P -  ( t j ) P -  (ab)Icy rmt i t . t j  

+ 1 p _  . .  mn e ab f 1 mn a e f  b . .  pan a be f --  ( t J ) P - ( a b ) l ~ f  r. t jmt i ( q ) l ~ f r i t ~ . t  i + - ~ P _ ( a b ) l ~ f r ~ t i j  t .  ¼P_ 

_ ¼ p _  . .  mn f be a 1 . .  mn ab f e  1 mn a f  eb 
( z j )P_(ab) le f  r i t j m t  n - -  ~ P _ ( q ) l e f r i .  tj,. --  ~P_(ab) l~ f  r o tmn 

__ 1 p _  . .  mn b ea f ¼e_( i j )P_  . .  e a f  b ( q ) e _ ( a b ) l . f  rj tm.t  i + (ab)l~y rmti. tj 

_ l p _ ( i j ) P _  ,~. b f~ ~ • . . . .  ¢ . b (ab)lef  r j tim t. -- ¼ P -  (q)P_(ab) l~ f  r,~t i t . t j  

1 . .  mn e a b  f 1 m n e  f b  a (41) -- ~ P _  (tj)l~y rmt, j  t i --  z P -  (ab)l~y rmtij tn, 

,b = 0, (42) PO 

where terms involving the Kronecker delta (3vq) in Eqs. (30) and (34) represent the 
reference determinant contribution. The factors that appear on the left-hand side of 
the equations are a consequence of the unrestricted summation in Eq. (23) and are 
included to avoid overcounting. 

Although complete algebraic expressions for the reduced one-particle density 
p~' are supplied above, diagrams and equations for the p¢P~q are restricted to con- 
tributions from ~ operator elements that link the reference determinant ] 0> to bra 
states belonging to g. In EOM-CC, 10> contributes [-with weight to] to the wave 
function for excited states of the same symmetry due to the definition of ~ and the 
structure of/] .  These "to contributions" to the reduced two-particle density may be 
operationally grouped with the ~ matrix elements since they are also defined by an 
equation that has the same form as the CCSD ground state density, 

[Pfq]~o = <01 £~'exp( -- T ) p * r q * s e x p ( T ) r o ] O >  (43) 

= ro<0l 5¢exp( -- T ) p * r q * s e x p ( T ) ]  0>, (44) 

except that the I amplitudes replace the 2 and all terms are scaled by a factor of ro. 
The complete effective two-particle density matrix can therefore be conveniently 
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computed by evaluating the terms in Eqs. (34)-(41) and then adding the contribu- 
tion 

(0IA exp( - T)exp(T)l 0). 

In Eq. (45), A is a composite operator 

(45) 

A = ~ + ro £,e, (46) 

whose definition is motivated by pragmatism rather than physical significance. The 
most demanding programming is associated with the first task, as an existing 
ground state CC gradient program can be used to evaluate Eq. (45) by simply using 
matrix elements of A instead of the 2 amplitudes. This is precisely the strategy that 
has been adopted in our implementation. 

3 Guidelines for implementation 

Although relatively simple conceptually, gradient equations such as Eq. (23) are 
not appropriate for numerical computations due to the inconvenience of evaluat- 
ing afpJOZ and ~ (pq II rs)/Oz explicitly. These quantities depend upon the first- 
order response of both the electronic Hamiltonian [in the atomic orbital basis] and 
the molecular orbital coefficients. Ideally, one seeks a formulation that avoids the 
latter since differentiated one- and two-electron integrals are readily calculated 
in the atomic orbital basis by standard Gaussian integral programs. An elegant 
means for eliminating the orbital response contribution was introduced more than 
a decade ago by Handy and Schaefer [57]. In this "z-vector" method - which is 
closely related to the approach used to eliminate the T amplitude response in 
CCSD and EOM-CCSD gradient theories - a linear equation involving the orbital 
rotation gradient and the self-consistent field orbital Hessian is solved. The result- 
ing solution can be considered as part of a one-particle effective density dff. 
Combining this with the perturbation dependence of the atomic orbitals allows 
Eq. (23) to be rewritten as 

~E 
Oz = Z -qA~'~(x>Jq~, + Z D~< rs II pq>Z + ipqSZq (47) 

pq pqrs 

where SpXq and (rs l[ pq)Z are derivatives of the atomic orbital overlap and antisym- 
metrized two-electron integrals transformed to the unperturbed molecular orbital 
representation,f¢~ ) are Fock matrix elements evaluated with differentiated integrals 
and the unperturbed reference determinant density matrix, and the Ipq coefficients 
serve to enforce orthonormality of the perturbed molecular orbitals. The z-vector 
and Ipq coefficients depend parametrically on both the unperturbed Hamiltonian 
and matrix elements of D. Apart froma dependence on D [and therefore p and ~], 
solution of the z-vector equations in EOM-CCSD gradient calculations requires 
no new theoretical insight or programming. 

The paragraph above underscores a point that was emphasized throughout the 
previous section, namely that an existing CCSD gradient program already contains 
much of the code needed to calculate EOM-CCSD energy derivatives provided the 
strategy outlined here is followed. Specifically, the only significant additional 
programming tasks are: (1) evaluation of the ~ and ~ amplitudes; (2) solution of 
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the ~ equation; and (3) computation of the reduced one- and two-particle density 
matrix. The remaining work consists of evaluating both ~ and the "ro contribu- 
tions" to p with the trick discussed at the end of Section 2 as well as straightforward 
interfacing to an existing CCSD gradient program. In our EOM-CCSD code 
(which has been incorporated in the ACES II program system [58]), the N ampli- 
tudes and p are evaluated with vectorized matrix multiplication algorithms that 
fully exploit Abelian point group symmetry [59] while the ~ amplitudes are 
calculated by solving Eq. [15] with a standard algorithm for the iterative solution 
of linear equations [60]. Despite the relatively small number of discrete objectives 
that must be met to modify and extend an existing CCSD gradient program to 
calculate EOM-CCSD energy derivatives, a significant amount of effort is required 
due to the large number of terms that contribute to the N and p matrix elements. 
Furthermore, effective treatment of symmetry requires some additional consider- 
ations since the contractions involve operators that do not necessarily transform 
according to the totally symmetric representation of the molecular point group 
[the overall symmetry of &o and N is determined by the direct product of the 
ground and final state symmetries], while only totally symmetric quantities are 
encountered in CCSD gradient calculations. 

While the equations presented in the previous section are in terms of the most 
fundamental wave function parameters IT, Ae and ~ amplitudes], considerable 
computational simplification is possible if suitable intermediates are precalculated 
and used in subsequent contractions. For example, in evaluating ~J P,b, the 
fourth, fifth, eighth and ninth terms may be calculated at once by performing the 
contraction 

where 

1 ., ab P_ (tj) ~ rm~ f#m,, (48) 
m 

tab ab ta b ,~j - tmg + P _  (ab) mr j ,  (49) 

~!~mi ~ - -  ~ lyr  e - ½ ~ "ef . . . .  "nif" (50) 
e nef 

It should be noted that the f# intermediate is precisely equal to the first and third 
terms in the defining equation for the pj elements (see Eq. (30)) and can also be used 
to simplify calculation of p matrix elements other than the p~ mentioned here. The 
choice of particular intermediates and the resulting computational scheme is 
a matter of choice, as no partitioning of terms will be optimal for all applications. 
For instance, a program intended for use on large molecules described by minimal 
or small split valence basis sets will benefit from a strategy that minimizes the 
number of contractions that involve a disproportionate number of occupied 
orbitals, but such an approach would not be wise for accurate large basis set 
calculations. However, some choice of intermediates should be used since a brute 
force diagram-by-diagram implementation is not efficient. 

Selected properties of reduced density matrices and the exact treatment of 
certain systems that is possible with EOM-CCSD may be used to develop debug- 
ging strategies for the gradient code. Some techniques that were useful in checking 
the accuracy of our implementation are discussed below. 
(i) As noted in the previous section, the 3 amplitudes vanish when the EOM- 
CCSD method is exact. Thus, calculations for two classes of systems - those with 
fewer than three electrons and those described by basis sets so small that there are 
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only one or two virtual spin orbitals - can check on certain aspects of the computer 
code for Eqs. (19) and (20). In these cases, all contributions to the ~ amplitudes 
represent exclusion principle violating terms and must therefore cancel exactly. 
While satisfaction of the condition ~ = ~ = 0 for these examples does not imply 
an absence of programming error, discrepancies can be helpful in identifying terms 
with incorrect factors and/or signs. 
(ii) Although the EOM-CCSD reduced density matrix is not generally Hermitian 
due to the biorthogonal nature of the wave function representation, the propor- 
tionality of bra and ket states for cases in which the method is exact insures that the 
density matrix is symmetric. Hence, the examples used to check the E amplitudes in 
(i) above can also test certain aspects of the code for the pff and pgq. Again, it can- 
not be assumed that a symmetric density in the exact limit implies a correct imple- 
mentation of the equations, but such a comparison does help to identify sign and 
factor errors. 
(iii) The effective one-particle density matrix elements D~ can be rigorously tested 
by calculations of one-electron properties that suppress effects of orbital relaxation. 
For example, EOM-CCSD energies obtained in the presence of small positive and 
negative electric fields can be differentiated numerically to yield the dipole moment. 
Use of the zero-field molecular orbitals in the calculations excludes all orbital 
relaxation contributions and this "dipole moment" that should agree exactly with 
the dot product of D~ with the electric dipole integrals. As Dff depends upon both 
the reduced density and the ~ amplitudes, agreement between numerical and 
analytical calculation of this "unrelaxed" dipole moment suggests that both pff and 
the ~ matrix elements are correct. 
(iv) A powerful check on the reduced one- and two-particle density matrices is to 
calculate the total electronic energy by contracting p with the bare Hamiltonian. If 
the energy obtained by this means agrees with the eigenvalue of//calculated by the 
EOM-CCSD energy code for several examples, the computer code for p is most 
probably correct. When disagreements are found, one useful approach for tracking 
down the error is provided by the following recipe. First, specific parts of the 5e or 

vector are set to zero (for example, all r~' elements) and the quantity ~ e / ~  is 
evaluated. This can then be compared to the "energy" calculated by evaluating the 
reduced density with this incorrect set of amplitudes and contracting it with the 
Hamiltonian. For example, if the energies agree only when the r a amplitudes are 
assigned a value of zero, then at least one error is certainly present in parts of the 
code that involve the Y~I amplitudes. 
(v) In a spin orbital implementation of the equations, results for states based on 
closed shell reference determinants (10>) can be compared to those in which the 
calculation is run with an unrestricted Hartree-Fock (UHF) reference in which 
all orbitals are doubly occupied. This turns out to be particularly useful when the 
spin symmetry of restricted Hartree-Fock references is exploited throughout the 
program and contractions are carried out using spin-adapted amplitudes and 
/7 matrix elements. As no such spin adaptation is possible for true (open-shell) 
UHF calculations, separate code is required. Disagreement between results ob- 
tained with both choices of reference again facilitates the detection of programming 
errors. 
(vi) A useful test for gradients based on open-shell UHF reference determinants 
is to compare results obtained with N, > Np (these refer to the number of ~ and 
fl electrons, respectively) to those calculated when the spins are "reversed" Na > N~. 
(vii) The explicit treatment of symmetry in our implementation can also be used to 
advantage. For example, calculations for the water molecule can be performed in 
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full C2v symmetry and the results can then be compared to those obtained from 
a run in which all symmetry is ignored. If the gradients do not agree exactly, then 
an error is present somewhere in the program. Results can then be compared 
subroutine by subroutine, which usually allows for a rapid identification of pro: 
gramming bugs. 
(viii) Finally, the gradient can be compared to the result obtained by numerically 
differentiating energies obtained at displaced geometries. Using double-sided dis- 
placement techniques and strict convergence criteria for all iterative stages of the 
energy calculations (the ground state SCF and CCSD equations as well as the 
/7 eigenvalue solution), six to eight digits of precision can be obtained in numer- 
ically calculated derivatives. This provides a rather robust check on the gradient 
code, especially if comparisons are made for difficult cases in which correlation 
effects are very large (for example, the water molecule with r(O-H) ~ 2 A). 

The discrete stages of the EOM-CCSD analytic energy derivative calculation 
are: 

• Calculation of one- and two-electron integrals in the atomic orbital basis. 
• Construction of the ground state zeroth-order Slater determinant I 0), usually by 
solving the self-consistent field equations. 
• Transformation of the atomic orbital integrals to the molecular orbital basis. 
• Evaluation of the ground state CCSD wave function and calculation of the one- 
and two-body matrix elements of/7. 
• Calculation of the right- and left-hand eigenvectors of/7 [A ° and ~]  for the root 
under study. 
• Computation of the 4 / and ~ amplitudes. 
• Solution of Eq. (15) for the ~ and ~ amplitudes. 
• Evaluation of the reduced density matrix elements p. 
• Calculation oft~ and the "to contributions" to p using the same program used for 
CCSD gradients. 
• Transformation of the effective density matrix elements to the atomic orbital 
representation. 
• Calculation of derivative overlap, one- and two-electron integrals in the atomic 
orbital representation. These are contracted "on the fly" with the effective density 
matrix elements and the Ipq to give the analytic derivative of the energy [44]. 

To conclude this section, a representative set of computational timings is 
presented in Table 1. In this example, an EOM-CCSD gradient calculation was 
performed for the first excited singlet state of vinylidene (C2Hz) using a basis set of 
78 contracted Gaussian functions on an IBM RS-6000/370 workstation. The 
reported CPU times clearly demonstrate that EOM-CCSD gradient calculations 
satisfy the most important criterion for applicability to physical problems, as the 
cost of evaluating the energy and its first derivatives with respect to nuclear 
displacements is less than twice that needed to calculate only the energy. Hence, 
this approach provides an efficient means for studying the potential energy surfaces 
of electronically excited states. 

4 Application to formyl fluoride 

Potential energy surfaces for low-lying excited states of formyl fluoride (HFCO) are 
of interest for several reasons. First, work by Weiner and Rosenfeld has shown that 
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photodissociation of this molecule occurs on the first excited singlet state ($1) 
surface and involves loss of either the hydrogen of fluorine atom [61, 62]. This 
differs qualitatively from the thermal ground state dissociation of HFCO, in which 
HF and CO are produced in a single elementary step. In addition, the seminal work 
by Moore's group on mode specific (non-RRKM) unimolecular dissociation has 
used the $1 state of HFCO as an intermediate in stimulated emission pumping 
experiments designed to probe highly excited vibrational levels of So 1-63-66]. 

By analogy to the heavily studied formaldehyde molecule [67], the ground and 
(n, n*) excited states of HFCO are expected to have significantly different equilib- 
rium geometries. In the simplest molecular orbital description, excitation involves 
promotion of an electron to an anti-bonding n orbital that is concentrated on the 
carbon atom. This has two important qualitative implications for the excited state 
structure. First, the C-O bond length is expected to lengthen due to the reduction 
in formal bond order associated with occupation of the antibonding orbital. In 
addition, the planar (C2v for CH20; Cs for HFCO) structure of the ground state 
species is not preserved in the excited states, as the carbon atom undergoes 
appreciable pyramidalization. Indeed, these qualitative expectations have been 
borne out in experimental studies of S 1 [69-71], as long vibrational progressions in 
the v2 carbonyl stretching and v6 "umbrella" mode are observed in the direct 
photoexcitation spectrum of HFCO. Furthermore, in stimulated emission pump- 
ing experiments 1"63-66], final states of So reached after the system is permitted to 
evolve for a short time ( ~ 50 ns) on the S ~ surface are highly excited with respect to 
both v2 and v6. While this evidence for a non-planar S~ structure is compelling, the 
best available set oof geometrical parameters is based on a limited rotational 
analysis Of the 2670 A band system and was published a quarter century ago 1,70]. 

Despite a considerable body of theoretical work on the ground state surface of 
HFCO and its implications for the HFCO--,  HF + CO unimolecular process 
[72-75], the excited states have virtually been ignored. Indeed, no ab initio 
prediction of the potential energy surface and minimum energy structure of HFCO 
(S~) has been published in the chemical literature. Accurate calculations for this 
system are needed, especially in view of the large uncertainties associated with the 
experimentally inferred structural parameters. It may be assumed that the lack of 
theoretical information regarding the S ~ state of HFCO results at least in part from 
the complexity of the potential energy surface. A tetratomic molecule with no non- 
trivial elements of symmetry has six internal degrees of freedom; exploration of the 
surface by means of energy calculations alone is not practical. Hence, the S 1 state of 
HFCO provides an illustrative example for demonstrating the power of the 
EOM-CCSD approach, as the availability of analytic energy derivatives for this 
method allows the properties and structure to be calculated in a straightforward 
and efficient manner. In this section, we present the first ab initio calculation of the 
equilibrium strucutre, harmonic vibrational frequencies and dipole moment com- 
ponents of HFCO in its first singlet excited (n, n*) state. 

In Table 2, optimized geometries, harmonic vibrational frequencies, infrared 
intensities, inertial axis dipole moment components and total energies are pres- 
ented for both the X1A' (Cs) ground state and A1A(C1) (n, n*) excited state of 
HFCO. For the i~ state, results are based on CCSD calculations carried out with 
a double-zeta plus polarization (DZP) basis set composed of Dunning's contrac- 
tions 1-75] and a single set of polarization functions [p on hydrogen d on all other 
atoms] with exponents given in Refs. 1,76] and 1-77]. For the excited state, calcu- 
lations were carried out at the EOM-CCSD level of theory with the same DZP 
basis set. Harmonic frequencies and infrared intensities (in the double harmonic 
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Table 2. Structural parameters and properties of the X1A' and AIA states of HFCO, obtained at the 
CCSD and EOM-CCSD levels, respectively, with the DZP basis set. z is defined by the angle 
between the C~O bond and its projection onto the plane containing the carbon, hydrogen and 
fluorine atoms. Bond lengths are in Angstroms, angles in degrees, harmonic frequencies in cm-1, 
infrared intensities in km/mol, and dipole moment components in Debye 

Parameter R1A' ~ IA 
RHF-CCSD Expt. EOM-CCSD Expt. 

re (CO) 1.1874 1.095 a 1.3462 
re (CF) 1.3403 1.338 a 1.3458 
ro (CH) 1.0997 1.181 a 1.0977 
0 e (OCF) 123.13 122.8 a 109.82 
0e (OCH) 127.35 127.3 ~ 116.10 
Te 180 180 ~ 46.3 

wl (CH stretch) 3173.51 2981.0 b 3147.33 
~z (CO stretch) 1923.85 1836.9 b 1217.57 
w3 (HCO bend) 1418.33 1342.5 b 1384.70 
~4 (CF stretch) 1126.65 1064.8 b 1149.10 
ms (FCO bend) 678.41 662.5 b 462.35 
~6 (umbrdla) 1046.72 1011.3 c 996.45 

11 37.2 - -  26.9 
Iz 296.2 - -  67.4 
13 3.4 - -  5.1 
14 263.6 - -  123.3 
15 22.3 - -  24.5 
16 0 .1  - -  11.4 

~ - -  - -  0.476 
~ --2.042 - -  --1.479 
p~ 0.621 - -  0.020 

Energy -213.348514 - -  -213.172010 

1.36 a 
1.34 a 
1.10 a 

1 1 0 .  d 

129. 0 
30--40 d 

1112 a 
1286 a 

450 a 
924 a 

m 

m 

m 

m 

m 

From Ref. [78] 
b Fundamental frequencies from Ref. 179] 
c Fundamental frequency from Ref. [65] 
d Structure and fundamental frequencies from Ref. [70] 
° Principal axis system coordinates are listed in Ref. 180] 

a p p r o x i m a t i o n )  were g en e ra t ed  by  n u m e r i c a l  d i f fe rent ia t ion  of ana ly t i c  energy  
g rad i en t s  a n d  d ipo le  m o m e n t s  o b t a i n e d  at  geomet r ies  d i sp laced  f rom e q u i l i b r i u m  
a l o n g  s y m m e t r y  a d a p t e d  i n t e r n a l  coord ina te s .  

T h e  p r e sen t  ca l cu l a t i ons  s u p p o r t  the  w e l l - g r o u n d e d  belief  t ha t  the  $1 state  of 
H F C O  a d o p t s  a n o n - p l a n a r  g e o m e t r y  qua l i t a t ive ly  s imi lar  to t ha t  seen in  the  
a n a l o g o u s  s ingle t  exci ted  s ta te  of f o r m a l d e h y d e  [67].  T h e  ex ten t  of p y r a m i d a l i z -  
a t i on  (as m e a s u r e d  by  the  ang le  z def ined  in  the  c a p t i o n  to T a b l e  2) in fe r red  f rom 
the  r o t a t i o n a l  ana lys i s  is s o m e w h a t  less t h a n  t ha t  o b t a i n e d  in  the  E O M - C C S D  
ca lcu la t ions .  Never the less ,  g iven  t ha t  the  s t ruc tu re  of Ref. [70]  is based  on  several  
a s s u m p t i o n s  necess i t a t ed  by  the  i n c o m p l e t e  n a t u r e  of  the  data ,  a g r e e m e n t  be tween  
E O M - C C S D  a n d  c o r r e s p o n d i n g  "expe r imen ta l "  geomet r ica l  p a r a m e t e r s  is satis-  
factory.  A s ign i f ican t  source  of p o t en t i a l  sys temat ic  e r ro r  is the  O - C - H  b o n d  angle,  
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which appears to close down by about 10 ° in the upper state. Since the con- 
strained refinement of Fischer gives a value that is actually a few degrees larger 
than the ground state bond angle, further study of the experimental structure is 
warranted. 

Calculated harmonic frequencies for the ~ state are consistent with those 
inferred from vibrational progressions in the near-UV spectrum of Ref. [70]. In 
addition, the dominant internal coordinate description of normal modes are in 
accord with those assigned by Fisher [70], although calculations suggest that HCO 
bending and CO stretching are both involved in the upper state v2 and v3 modes. 
As one intuitively expects, the significant difference between ground and excited 
state structures is reflected in the normal mode frequencies. In particular, the 
carbonyl stretching frequency (v2) is much lower in the A state, while the increased 
HCF bending frequency (vs) may be attributed to the large reduction in the excited 
state bond angle (116 ° vs. 127 ° in the ground state). 

Once the excited state geometry and harmonic force field are known, adiabatic 
excitation energies may be calculated. When corrected for vibrational zero-point 
energies, the resulting electronic term values (To) can be compared with 0-0 band 
origins that are either observed directly or extrapolated from vibrational progres- 
sions. This provides a good check on the accuracy of the excited state treatment 
and is somewhat more satisfying than comparing theoretical vertical excita- 
tion energies to the position of absorption maxima, especially in cases where large 
and qualitatively significant geometry changes take place. While calculation of 
To values for diatomics and highly symmetrical small molecules is not particularly 
demanding, it must be emphasized that the structure and vibrational frequencies 
can be calculated economically for the Sl state of HFCO only when analytic 
gradient methods are used. With the DZP basis set, the theoretical EOM-CCSD 
term value for the /~IA *--RIA' excitation process is To = 4.74 eV, in excellent 
agreement with the experimentally measured threshold energy of 4.65eV 
(37488 cm- 1). The accurate prediction of To at the EOM-CCSD level with a DZP 
basis set and the good agreement between calculated and observed vibrational 
frequencies indicate that the S 1 state of formyl fluoride is quite satisfactorily treated 
by this economical level of approximation. 

The exploratory study of the HFCO ($1) potential energy surface reported here 
augments a growing body of work in which EOM-CCSD gradient methods have 
been used to successfully study electronically excited states and their properties. 
Already, this new theoretical tool has been used to investigate the first excited state 
of acetylene [29], to predict threshold energies and vibrational progressions in the 
photodetachment spectrum of the vinylidene anion [30], and to identify pathways 
for HCN ~ HNC isomerization in the two lowest excited states of that system 
1-34]. Given the wide scope of unsolved questions in photochemistry and electronic 
spectroscopy, it is logical to conclude that applications of EOM-CCSD will be 
reported with increasing frequency in the next few years. For problems that require 
some consideration of excited state structures or potential energy surfaces, the 
efficient gradient formulation documented here represents an invaluable extension 
to the basic method. 
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